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Abstract—We introduce a novel framework for efficient stereo
disparity estimation leveraging the spatial smoothness typically
assumed in stereo and formalized by the various smoothness
constraints. The smoothness constraint presumes that a neigh-
boring set of pixels shares the same disparity or the disparity
varies smoothly. Our key insight is that it hence suffices to
evaluate any single one of those pixels at the correct disparity
to identify a valid estimate for the entire set. We leverage this
insight into the formulation of a complexity reducing mech-
anism. We distribute the exploration of the disparity search
space among neighboring pixels, effectively reducing the set of
disparity hypothesis evaluated at each individual pixel. Moreover,
we integrate a recently proposed concept to deploy sparsity
within this neighborhood of distributed disparities into our novel
mechanism, in order to further reduce the computational burden.
Our experiments clearly demonstrate the effectiveness of our
approach by achieving comparable results to the baseline of
exhaustive disparity search. The analysis of the computational
complexity of our proposed mechanisms illustrates how, by
making moderate assumptions on the smoothness of the observed
scene, we can reduce the computational complexity of local stereo
disparity search by upwards of two orders of magnitude while
maintaining the comparable result quality.

Index Terms—stereo; cost aggregation; sparse distributed dis-
parity sampling;

I. INTRODUCTION

Stereo disparity estimation is an extensively studied topic
in computer vision. Historically, there has been a watershed
between global and local approaches in terms of both solution
quality and computational effort. The qualitative advantage
of many global methods can be attributed to the enforce-
ment of smoothness constraints (i.e. as a regularizing term
within an energy minimization framework). Nevertheless, such
constraint modeling typically comes at a steep computational
cost, as it effectively augments the complexity of the disparity
search space by introducing global correlations and/or penal-
ties among local disparities estimates. In contrast, we propose
the use of smoothness constraints within local stereo disparity
search not to explicitly regularize an optimization criterion,
but instead, to mitigate computational redundancy.

In its most basic form, stereo disparity estimation exhaus-
tively enumerates and evaluates for each pixel the set of all
disparity hypotheses within a predefined range. The accuracy
and efficiency of such disparity estimates is contingent upon
a variety of factors such as the photo-consistency measure
used to compare pixel similarity, the scope and form of the
aggregation mechanisms used to robustify individual pixel
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Fig. 1. Relationship between a traditional exhaustive search disparity
strategy and our proposed DDS strategy. At left, every pixel within a local
neighborhood is evaluated at each possible disparity. At middle, our proposed
scheme where each pixel sparsely samples the disparity space, relying on
neighboring pixels to infer missing data.

similarity measurements, as well as the search strategy (if
any) used to explore the space of disparity hypotheses. In
order to develop an efficient disparity search strategy, we
leverage the implicit smoothness assumption used in most
fronto-parallel photo-consistency measures, where pixels in
a local neighborhood are assumed to belong to the same
fronto-parallel surface and have the same disparity. Clearly,
such a smoothness assumption suggests that there is sig-
nificant redundancy in an exhaustive search of the dispar-
ity search space for each pixel. Hence, our first contribu-
tion is to reduce the number of evaluated depth hypothesis
by spatially distributing (within a local neighborhood) the
sampling of the depth hypothesis space. We introduce this
structured approximation as Distributed Disparity Sampling
(DDS). Our second contribution is to incorporate within this
new framework the recently introduced concept of spatial
sampling [1], a develop generalization of DDS we denote as
Sparse Distributed Disparity Sampling (SDDS). The concepts
of spatial and disparity sparsity are orthogonal in the sense that
they may be used independently or in a combination. In this
paper we propose a stereo disparity approach that conjugates
these two separate sparsity concepts in a manner consistent
with the concept of smoothness in disparity estimation. We
note that spatial smoothness is an ubiquitous and implicit
assumption throughout stereo methods, whose relevance for
algorithm design has been hitherto neglected. Moreover, even
though both sparsity mechanisms represent efficiency driven
approximations, we combine them into a reduced complexity
disparity estimation framework, yielding comparable results to
exhaustive search.



II. RELATED WORK

Reducing the computational requirements of local stereo
methods has recently received renewed attention. A standard
complexity reducing approach based on changing the search
strategy is the use of hierarchical stereo methods deploying
Coarse-to-Fine (CTF) disparity refinement [2]. The benefit of
these approaches is to reduce the total number of disparity
comparisons required for estimating a single pixel’s disparity.
Modifications to the search strategy of CTF approaches, aimed
to overcome their biggest limitation of not estimating the depth
of thin objects, include the work by Jen et al. [3], which
actively determines the coarsest scale at which a given pixel
may be reliably estimated given its surrounding texture. In
this way, the authors achieve a data-driven trade-off among
computational efficiency and estimation accuracy. However,
computational savings are bounded by maximum efficiency of
CTF approaches and depend on the specific scene. In con-
trast, our proposed method achieves highly efficient disparity
search, while performing all computations at the native image
resolution.

Another approach is to reduce the computational complexity
of pixel aggregation mechanisms. In this regard, integral im-
ages have been used successfully to reduce area based aggre-
gation to a constant time operation [4]. The more challenging
problem of performing variable weighted cost aggregation
[5], [6], in constant time has been addressed recently in [7],
[8]. While these approaches allow for the use of robust cost
functions across arbitrarily large templates they either restrict
themselves to the case of asymmetric weighting (notable
exception De-Maeztu et al. [9]) or involve significant pre-
aggregation requirements. Comparatively, our method retain-
s the accuracy benefits of variable cost aggregation while
increasing the throughput of the depth estimation process
through a lower number of these template comparisons.

Hawe et al. [10] explored the use of spatial sub-sampling
within the image to reduce the number of pixels whose
disparity needs to be explicitly evaluated. The authors used
a compressed sensing formulation to reconstruct high quality
disparity maps from a reduced set of robust depth estimates
(as low as 5% of image pixels). While such an approach
eliminates a significant portion of the disparity estimation cost
it transfers this cost to the optimization procedure needed
for reconstructing the dense disparity map from the sparse
samples. Our novel method extends the concept of sparse
sampling from the image space to the cost volume space and
efficiently propagates robust samples to create dense disparity
maps through a localized voting framework.

More closely related to our work is the recent proposal
by Min et al. [1] for efficient cost aggregation, which com-
bines both a new pixel-wise likelihood histogram aggregation
scheme along with sparse image sampling in order to drastical-
ly reduce computational complexity. The authors explored the
robustness of their cost aggregation scheme across different
levels of pixel sampling sparsity and discovered that for
their proposal there is not a monotonic correlation between

estimation accuracy and the sampling sparseness. In contrast
to [1], we favor robustness by deploying full template vari-
able cost aggregation instead of single pixel intensity photo-
consistency. To overcome the related performance challenges
we couple our template variable cost aggregation with a
depth sub-sampling framework, which achieves both lower
computational complexity and higher processing speed, while
simultaneously improving accuracy.

Most of the top ranked state of the art stereo algorithms are
segment-based global stereo approaches (7 out of the top 10
according to the Middlebury benchmark [11]). Some of these
methods directly work on segmented images [12], [13], so that
the smoothness assumption is implicitly embedded in each of
the segments: pixels in the same segment should have the same
disparity. More recent work [14] weakened this constraint by
using overlapping subsegments. Some local stereo algorithms
[15] also use line segmentation to utilize the smoothness
assumption. In contrast to global methods using smoothness as
an explicit regularizer, we use the smoothness assumption to
enable a sparse cost volume computation yielding a speedup
of two orders of magnitude.

III. DISTRIBUTED DISPARITY SAMPLING

The smoothness constraint in stereo estimation confers a
strong correlation between the spatial proximity of neighbor-
ing image pixels and the spatial proximity of their correspond-
ing 3D points in the observed scene. Accordingly, having each
pixel evaluate all possible disparities using a photo-consistency
measure that implicitly enforces such smoothness constraints,
leads unequivocally to the realization that there is significant
redundancy in the computation of local stereo methods.

Key Insight. If we assume a neighboring set of pixels share
the same disparity, it suffices to evaluate any single one of
those pixels at the correct disparity to identify a valid estimate
for the entire set.

In this paper, we propose to modify the traditional (exhaus-
tive) search strategy for disparity estimation into a structured
and sparsely spatially distributed search scheme. Namely, lets
assume, without loss of generality, a neighborhood of pixels
ℵ = {pi|i ∈ [1, . . . , N ]}, which satisfies the smoothness
constraint. Let us further assign to each pi a disparity offset
value oi ∈ [1, . . . , N ], such that {oi ̸= oj |∀i ̸= j}. In order for
the neighborhood of pixels ℵ to collectively explore an entire
consecutive set of disparities D= {dk|k ∈ [1, . . . , D]}, where
D ≥ N , it suffices to assign to each pi a subset of disparities
{dij = dk|k = j ∗N + i , j ≥ 0 , k ≤ D}, where the union
of the subsets for pixels in ℵ equals the entire disparity range.
In this way, each pixel will search a sparse set of disparities
where the number of total disparities is bounded by the ratio
D/N and the disparity offset between consecutive samples is
N .

We denote this new depth sampling scheme Distributed
Disparity Sampling (DDS). In order to extend DDS across
the entire image we may simply tile the image with this
sampling pattern, which ensures that in each local stereo
window the set of sampled disparities equals D . In this way,



disparity assignment is based on the traditional winner take
all (WTA) selection within a vicinity centered on a given
pixel. Note that for pixels near the periphery of their sampling
pattern, their WTA vicinity encompasses pixels belonging to
neighboring sampling patterns. Accordingly, the distribution
of offsets within the search patterns, may introduce bias into
our estimation. We have found that randomly determining a
fixed pattern to be repeated across the entire image generally
provides robust results and minimizes the bias. The reduction
in computational complexity afforded by DDS is proportional
to the size of the disparity distribution neighborhood. Hence,
if we define a square neighborhood of side length M=10 for
an effective quadratic reduction in computational complexity
of two orders of magnitude.

The proposed DDS scheme will provide reliable depth esti-
mates only when the neighborhood used for depth exploration
covers a single fronto-parallel surface. Moreover, while DDS
indeed provides a remarkable performance to cost ratio (we
refer to Section VI for further details), up to this point we
have only considered the case where the disparity range is
larger than the number of pixels in the disparity distribution
neighborhood ℵ (i.e. D ≥ N ). In order to improve upon the ef-
ficiency of DDS we have explored the opposite scenario where
D < N . A straightforward solution is to apply redundant
disparity sampling within the DDS neighborhood. Instead, we
have incorporated spatial sparsity into our approach and in
doing so we have developed a more efficient and accurate
generalization of DDS, which is described in the following
section.

IV. SPARSE DISTRIBUTED DISPARITY SAMPLING

In this section we extend our novel DDS method to be
able to leverage the spatial sparsity concept proposed by Min
et al. [1]. The resulting sparse distributed disparity sampling
(SDDS) approach can be summarized as follows.

1) We define a set of neighborhoods (with possible overlap)
that cover the entire image. For each of these neighbor-
hoods:

a) We randomly select individual pixels to be eval-
uated each at a single specific disparity hypothe-
sis until the entire disparity range D is sampled
without redundancy, i. e. each disparity is sampled
once.

b) Step 1 (a) is performed k times for the neighbor-
hood to obtain a consensus on a reduced set of
representative disparities for it.

2) Then we spread a regular sparse pattern of seeds across
the entire image and for each seed we evaluate the joint
set of representative depths of all the neighborhoods to
which the seed belongs.

3) The disparity estimate for each of the seed pixels is the
one with minimum cost among those evaluated in Step
2.

4) The disparity estimate for non-seed pixels is obtained
through proximity and photo-consistency weighted vot-
ing among all seeds in their vicinity.

Our cost aggregation deploys robust symmetric weight aggre-
gation during the windowed matching (steps 1(a) and step
2). The remainder of this section discusses in greater detail
the mechanisms and design decisions enabling our SDDS
approach.

A. Variable Cost Aggregation

We rely on variable cost aggregation (VCA) in a similar
manner to [5], as it has been shown to be a highly accurate and
discriminative local photo-consistency aggregation framework.
We mitigate the computational burden of using VCA by
effectively reducing the number of times such template vs.
template evaluations need to be made. Note that this in no
way precludes the use of constant time weighted aggregation
approaches such as the ones discussed in Section II. For
adaptive weight based stereo, the matching cost for pixel p
with disparity d is computed as:

cost(p, d) =

∑
q∈N(p) w(p, q)w(p̄, q̄)e(q, q̄)∑

q∈N(p) w(p, q)w(p̄, q̄)
(1)

where p̄ = p− d and q̄ = q − d are the corresponding pixels
of p and q on the matching image, while N(p) is the set of
p’s neighbors. The pixel similarity measure e(q, q̄) used in this
work is the AD-census cost [16]. The adaptive weight w(p, q)
for q with respect to the center p, combines the color distance
(in CIELAB space) and the spatial distance:

w(p, q) = exp

(
−∥ (Ip − Iq) ∥2

λcolor
− ∥ (p− q) ∥2

λspatial

)
(2)

here λcolor and λspatial are constants used to adjust the
influences of color and spatial differences.

The two most time consuming operations are the pixel-wise
comparison e(q, q̄) and the weighting w(p, q). Even though
very efficient implementations of the AD-Census similarity
measure can be achieved [16], we note in general that pixel-
wise weight computation w(p, q) is more efficient than sim-
ilarity computation e(q, q̄), due to the overhead associated
with the census transform estimation in addition to Census
and SAD aggregation. Other operations like disparity sorting
could be ignored with respect to these two operations. To
analyze the time complexity of VCA we define Q to be
the number of pixels in the image, D the number of tested
disparity hypotheses, and W the side length of a square
matching window. Then the complexity of the exhaustive
adaptive weight stereo is QDW 2(2 ∗ uw + um), where um

and uw are basic complexity for pixel-wise comparison and
weighting. Here, we reduce the window size W by sparse
spatial sampling. Let s ∈ [1, . . . ,W/2] be the sampling step
indicating the distance between samples along each image
direction, then sub-sampling reduces the total complexity by
a factor of 1/s2. Note that, such spatial sub-sampling within
the photo-consistency measure assumes smoothness between
pixels separated by L = s/2 pixels. This formulation implies
that by performing photo-consistency using every consecutive
pixel (i.e. s = 1) we are in fact assuming a smoothness level
of L = 0.5 pixels (i.e. the strong spatial correlations only
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Fig. 2. Disparity sampling analysis. Case 1: only one peak of the score
profile for continuous surfaces; case 2: two peaks for simple discontinuous
region (only two different surfaces); case 3: no distinguish peaks for patches
with complex structures.

extend from the center of the pixel to each edge along both
directions). Depending on the smoothness level assumed for a
given image scene, the value of s can be reasonably controlled.
We empirically determined a value s = 4 representing a good
trade-off between accuracy and efficiency.

B. Representative Depths of a Neighborhood

For each local patch, we randomly select D (equal to the
size of the disparity set) pixels, assign them different test
disparities and compute their costs according to Eqn. (1). Next,
we sort all the estimated costs and assign to each disparity
a score inversely proportional to its order. By repeating this
sampling and aggregating the scores for each disparity, we
obtain a reliable profile of scores, which approximates the
profile of the likelihoods of all disparities within the local
patch structure. For example (as illustrated in Figure 2), if we
only find one peak in the profile, since weights are computed
from randomly selected pixels, it is highly probable that all the
pixels in the local patch share the same disparity. Similarly, if
there are two peaks, the local patch may be on the boundary
of two objects, the absence of distinguishable peaks suggests
the complex scene, which may not follow the smoothness
assumption.

Let ci be the cost for the ith disparity after a single
sampling, and oi is the position of the ith disparity in the
sorted sequence of the cost of the disparities, then each
disparity is scored as 1/oi. After sampling k times, disparities
with total scores greater than Ts (pre-defined threshold, e.g.
Ts = 1.2 when sampling 4 times) will be treated as the
representative disparities for the current local patch. Given
that sampled pixels are selected randomly, there is in fact a
possibility of failing to find any correct disparities. However,
in practice, SDDS works well for patches containing three or
less structures.

It can be seen that if all all the sampled pixels within a
local patch belong to a single fronto-parallel surface (i.e. they
all have the same disparity), the probability of identifying the
correct disparity is P= 1 given that all disparities of D are

sampled. Accordingly, after the kth sampling, the final score
for the correct disparity would be k. Hence for patches from
a single surface, we will always find the correct disparity
(i.e. one of the samples will be correct and we are certain
this sample will have the highest score). This argumentation
is predicated on the typical assumptions made in stereo that
for a given pixel, the correct disparity will get the smallest
cost, or alternatively, that this minimum cost corresponds to
the best possible disparity estimate. This implies that when a
pixel is evaluated at its correct disparity hypothesis, it will be
within the disparities with the smallest cost hence oi will be
small after sorting the results of all disparity values within the
patch. It is further assumed that the positions oi of the other
(incorrect) disparity estimates within the patch are randomly
distributed, which is true for all regions with a well defined
global cost minimum. In all other cases the stereo decision
is ambitious. Hence we exclude them from our analysis,
although in practice even those cases work robustly. For
patches containing multiple surfaces we chose the threshold
Ts to ensure a false positive rate (wrong disparities selected
into the set of interest disparities) of about 2%. Please, note
that any wrong disparity being part of the interest disparities
does only slightly influence computational performance but
has no quality implications.

C. Sparse Seed Evaluation and Propagation

The distributed attainment of a representative disparity set
for each neighborhood can be seen as an efficient sampling
in disparity space. In the next stage of our pipeline we also
perform sampling on the 2D image space to reduce computa-
tion even further. Given that neighboring pixels generally have
similar matching costs for a given disparity, it is reasonable
for the majority of pixels to approximate their corresponding
costs from a set of pre-computed cost measurements in their
vicinity. This reasoning leads to the sparse sampling of the
image by means of pixel "seeds". Seed selection may be color
similarity based or spatial proximity based. However, a good
color-based sampling usually needs additional processing like
clustering or segmentation, which may be prohibitive in cost
for local stereo methods. Accordingly, we uniformly distribute
m seeds in the image, and for each disparity d belonging
to the joint set of representative disparities of the seed, we
compute their adaptive weight costs cs1,d, ..., csm,d. For the
ith remaining pixels, their costs ci,d are computed by weighted
aggregating from neighboring seeds

ci,d =

∑
sj∈N(i) w(i, sj)csj ,d∑

sj∈N(i) w(i, sj)
. (3)

Where N(i) is the set of seeds within the ith pixel’s proximity
and wi,sj is the adaptive weight between the ith and sj th
pixels. After cost aggregation, the candidate disparity with
minimum cost will be chosen as the final disparity.

D. Computational cost analysis

In this section, we analyze the total computational cost
of our SDDS approach. As discussed in Section IV-A, the



complexity for exhaustive adaptive weight based stereo and
corresponding sub-sampled aggregation stereo are CEX =
QDW 2(2uw + um) and CSP = QDW 2(2uw + um)/s2,
where Q is the total number of pixels, D is the size of
the disparity set, W is the size ( width and height ) of
matching window, sis the spatial sampling ratio inside the
matching window, u is the unit computation cost, uw and
um are complexity for pixels-wise weighting (uw ≈ 2u) and
pixels-wise matching cost (um ≈ 5u). In our algorithm, when
applying sampled aggregation, the computational cost C1 to
select the representative disparities, the cost C2 for aggregating
the seed costs’, and the computational cost C3 for aggregating
the remaining pixels’ costs are:

C1 = kQDW 2(2uw + um)/(µs2B2) (4)
C2 = mQDcW

2(2uw + um)/(µs2B2) (5)
C3 = nQDcuw/µ. (6)

where B is the size of local patch, Dc is the average size of
selected candidate disparities (≈ 3), 1 − µ is the overlapping
ratio of neighboring patches, k is the number of randomly
sampling times, m is the number of seeds per local patch, and
n is the number of neighboring seeds for cost aggregation.
Accordingly, the total complexity CSDDS = C1 + C2 + C3.
Substituting the default values used in our experiments (see
Table I), and assuming the size of the original disparity set
D = 60, block size B = 50, and sampling k = 4 times, we
find ratio of computational costs to be CEX

CSDDS
= 1096 and

CSP

CSDDS
= 69. In fact, even when omitting the use of sub-

sampling within the VCA matching (i.e. s = 1), we obtain
a computational speed-up of CEX

CSDDS
= 131. We can see our

disparity sampling approach reduces the computational cost
dramatically. The main reason is that our method reduces
the cardinality of the tested disparities per pixel (≈ 3).
Additionally, our technique replaces the costly and redundant
matching cost computation (patch-wise comparison) by aggre-
gating costs from neighboring seeds, which has only a cost of
2uw+um to uw. Comparing with another fast stereo approach
HistoAggr [1], whose computational cost could be approx-
imated by CHA = QDum/(s2HA) + QDfixedW

2uw/(s
2
HA),

where sHA = 3 is the default spatial ratio and Dfixed = D/10
is a fixed subset size of disparities. Our experiments clearly
demonstrate that our method outperforms [1] by a factor of
2.8 =

(
CHA

CSDDS

)
.

V. DISPARITY REFINEMENT

To overcome the typical minor mishaps of local stereo
estimation caused for example by occlusions, we propose a
voting-based refinement method inspired by the work of [1].
Firstly, pixels P r

i with reliable disparities dri are found by
left-right cross validation. Since the cost cri for each reliable
disparity dri is known after the disparity computation, we
define the likelihood for dri as lri = 1 − cri . Notice that each
reliable pixel only needs to keep the likelihood value for its
final disparity. When estimating the disparity for an unreliable
pixel Pu

j , first we check the ratio of reliable pixels within

its neighborhood, if the ratio is greater than some pre-defined
threshold TN , then we build a voting list for all the reliable
disparities occurring in its neighborhood, and the voting score
is computed by summing weighted likelihoods of the reliable
neighbors:

vuj,di
=

∑
P r

i ∈Nr(Pu
j )

lriw(P
u
j , P

r
i ), (7)

where Nr(P
u
j ) is the set of reliable pixels within Pu

j ’s
neighborhood Nr, and the weights w(Pu

j , P
r
i ) are computed

by Equation 2. Also, for each candidate disparity di, its
confidence fj,di is determined by the maximum value of
corresponding weight w(Pu

j , P
r
i ). Then the disparity with

maximum confidence vuj,di
greater than threshold TF (initially

TF = 0.5) is chosen as the final disparity drj . If no candidate
disparity has good confidence, the minimum disparity will
be set as the final disparity (similar to filling holes with the
background). Finally, Pu

j becomes a new reliable pixel P r
j ,

and its new likelihood is computed as

lrj =
vuj,dj∑

di=dj
w(P r

j , P
r
i )

(8)

We repeat the above procedure for all unreliable pixels,
and gradually decrease the threshold TF if all the unreliable
pixels cannot find enough reliable neighbors. The detailed
algorithm is shown in Algorithm 1. Notice that the goal
of this paper is to more efficiently perform the local depth
estimation without loss of accuracy. We utilized similar post
processing to that in [1] in order to better contextualize our
results with respect to the Middlebury benchmark and make
both approaches comparable. Improved refinement procedures
would elevate the ranking of our implementation but that was
not our emphasis.

VI. EXPERIMENTS

We evaluate our methods on the stereo images from the
Middlebury benchmark. Table I lists the default parameters
used in all experiments, whose corresponding descriptions may
be found in Section IV-D.

TABLE I
DEFAULT VALUES FOR EXPERIMENT PARAMETERS.

Parameter W s µ m n
default value 31 4 50% 100 20

In the first set of experiments, we investigate the quality of
raw disparity images. As an evaluation baseline, we use the
results and performance of an exhaustive disparity search with
variable cost aggregation. Moreover, we omitted performing
our disparity and spatial sub-sampling, yielding a similar
approach to that of [7] but using AD-Census as a photocon-
sistency measure. Results for DDS and SDDS, with varying
cardinality of the disparity exploration neighborhood ℵ, are
compared relatively to the baseline, with all methods being
executed on the same machine. For accuracy comparison,



Algorithm 1 Voting Refinement
1: Parameters:
2: {P r} and {Pu}: set of reliable and unreliable pixels
3: dri : disparity for reliable pixels P r

i ∈ {P r}
4: lri : likelihood for reliable pixels P r

i with disparity dri
5: Nr(P

u
j ): set of neighboring reliable pixels for Pu

j

6: TN : Threshold of size of neighboring reliable pixels
7: TF : Threshold of confidence
8:
9: Algorithm:

10: while {Pu} ≠ ∅ do
11: for Pu

j ∈ {Pu} do
12: if |Nr(P

u
j )| < TN then

13: continue
14: end if
15: Initialize voting list vu for candidate set {d}
16: for di ∈ {d} do
17: vuj,di

=
∑

P r
i ∈Nr(Pu

j ) w(P
u
j , P

r
i )l

r
i

18: fj,di = maxP r
i ∈Nr(Pu

j )({w(Pu
j , P

r
i )})

19: end for
20: if max({fj,di}) < TF then
21: dj = min({d})
22: else
23: dj = argmaxdi

({vuj,di
})

24: end if
25: lrj = vuj,dj

/
∑

di=dj
w(Pu

j , P
r
i )

26: {Pu} = {Pu} − Pu
j

27: {P r} = {P r} ∪ Pu
j

28: end for
29: if |{Pu}| not decrease then
30: TN = TN/2
31: end if
32: end while

the baseline is the number of pixels with correct disparities
(according to the Midlebury benchmark [11]) generated by
the baseline. From this value, the hit ratio is computed
as the number of correct pixels estimated by our methods
divided by the same corresponding quantity for the baseline
method. Similarly, the relative processing time compares the
processing times of the exhaustive baseline method and our
proposals.

First, we investigate how the performance of DDS changes
when the neighborhood size N increases form 32 to 92, see
Figure 3. We find that for images with small disparity set(D <
20, e.g. Tsukuba and Venus), the hit ratio and processing time
do not decrease significantly when N ≥ 52, this is because
when D ≤ N , each pixel only tests a single disparity (the
sparsest case for DDS), and no further computation savings
can be achieved. For large disparity sets (Teddy and Cones),
the relative processing time is about 0.0016 when N = 92

(approximately 625 times faster than the baseline), while DDS
is still able to obtain more than 90% hit ratio. The considerable
speed up for DSS is a consequence of both the quadratic

0.96

0.98

1

1.02

1.04

H
it
ra
ti
o

0.92

0.94

1 3 5 7 9 11

Neighborhood window size √N

0.01

0.1

R
e
la
ti
v
e
p
ro
ce
ss
in
g
ti
m
e

0.001

1 3 5 7 9 11

R
e
la

Neighborhood window size √N

Tsukuba Venus Teddy Cones

Fig. 3. Raw disparity map evaluation for DDS : Hit ratio and Relative
processing time

reduction in depth sampling and the sparse spatial sampling
used for variable cost aggregation.

Similar comparisons for SDDS are shown in Figure 4 for
various block sizes 11 ≤ B ≤ 91 and sampling iterations
2 ≤ k ≤ 10. From the hit ratio plot, we can see when B ≤
51, SDDS hits more than 95% percent of reliable pixels by
sampling 2 times. Even for large block sizes (71 and 91),
the hit ratio is greater than 90% after using four samples to
build the representative disparities set. Particularly, the hit ratio
for Venus images is greater than 1, which means our method
could find more reliable pixels than the exhaustive method did.
From the processing time comparison, we can see when the
block size is larger than 51 and sampling times less than 5,
the processing time is improved by 1000 times. Considering
that the sparse aggregation scheme speeds up our algorithm
by 16 times, the pure benefit of our disparity sampling scheme
is more than 60 times.

Comparing DDS and SDDS on the Cones dataset illus-
trates the relative processing time for DDS (N = 92) and
SDDS(B = 51 and k = 4) are 0.00164(≈ 610 times) and
0.00108(≈ 926 times) respectively, while the corresponding
hit ratios are 0.94 and 1.00. Similar results have been found
for other datasets, indicating that SDDS is both faster and
more accurate than DDS.

For the second set of experiments we benchmarked our
performance against three recently proposed stereo algorithms
aimed at improving efficiency: HistoAggr[1] (pixel-wise cost
aggregation), ESAW[17] (exponential step cost aggregation),
and CSBP[18] (constant-space belief propagation). Our C++
with OpenMP (4 threads) implementation of SDDS was
executed on a Quad-core Intel Xeon W3540 @2.93GHz
with default parameters shown in Section 4.4. We used our
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Fig. 4. Raw disparity map evaluation for SDDS: Hit ratio (top) and relative processing time (bottom) for various block size B and sampling times k.

own implementation of HistoAggr in C++ with OpenMP (4
threads). We used the author provided code for CSBP and
ESAW. For ESAW we set the number of iterations to six in
order to achieve comparable results (longer executions tend
to improve quality at the cost of efficiency). Table II shows
the Middlebury benchmark results for raw disparity map
comparison for disparity error (all pixels) and processing time.
Notice that our SDDS implementation is CPU based, and is the
fastest among all reported CPU methods. Specific comparison
with the computational times reported in [1] should reflect on
the significance of our proposal. All faster methods on the
Middlebury website deploy GPU implementations and there
is no aspect of our framework that precludes this.

For the third set of experiments we compared our refined
output against those reported on the Middlebury benchmark.
Depthmap refinement effectively doubled our execution time
given the need to generate both left and right depthmaps and
also adds a processing time penalty in the range of 0.3s to
0.5s depending on resolution. Figure 5 shows refined disparity
maps for DDS(N = 3) and SDDS(B = 51 and k = 4), while
the corresponding quantitative evaluation results are listed in
Table III(results for SDDS have been uploaded to Middlebury
website). We find that SDDS consistently outperforms DDS,
especially for the discontinuous regions like the lamp arm,
which means SDDS is more efficient for sampling disparities
than using fixed patterns. Also, we can see SDDS has better
performance than other adaptive weight based stereo approach-
es like HistoAggr [1], FastBilateral[6], and FastAggreg [19].
Our results for Venus and Teddy are even better than the
conventional adaptive weight algorithm (AdaptWeight [5]).
For large continuous regions with outliers having very low
costs for incorrect disparities, our approach usually has better
results. One reason is that due to repeated random sampling
scheme, scores of incorrect disparities are unlikely to be high
enough to be selected as the potential disparities for the whole
block, so their influence is limited.

VII. CONCLUSIONS

We have presented and efficient and accurate modification
to the standard exhaustive search paradigm in local stereo.

We have achieved this by incorporating the concept of depth
smoothness at the algorithm design level. Our approach in-
corporates sub-sampling at the disparity as well as the spatial
search space. The joint use of these orthogonal performance-
oriented optimization mechanisms enables a dramatic reduc-
tion in the computational burden of local stereo methods, by
reducing the total number of template comparisons. Such an
approach enables the efficient implementation of variable cost
aggregation and outperforms, in terms of solution quality and
speed, recent state of the art work on complexity reduction for
local stereo [1].

Future work entails developing a more data adaptive scheme
to improve upon our current fixed parameter selection. Addi-
tionally, we plan to integrate our approach into to a high-
throughput GPU implementation and explore its performance
for high resolution images.
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