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Abstract

We address the problem of recognizing a place depicted
in a query image by using a large database of geo-tagged
images at a city-scale. In particular, we discover features
that are useful for recognizing a place in a data-driven man-
ner, and use this knowledge to predict useful features in a
query image prior to the geo-localization process. This al-
lows us to achieve better performance while reducing the
number of features. Also, for both learning to predict fea-
tures and retrieving geo-tagged images from the database,
we propose per-bundle vector of locally aggregated de-
scriptors (PBVLAD), where each maximally stable region
is described by a vector of locally aggregated descriptors
(VLAD) on multiple scale-invariant features detected within
the region. Experimental results show the proposed ap-
proach achieves a significant improvement over other base-
line methods.

1. Introduction
Image geo-localization is the process of determining the

capturing viewpoint’s positioning w.r.t. a geographic refe-
rence [43]. The recent availability of large scale geo-tagged
image collections, enables the use of image retrieval frame-
works to transfer geo-tag data from a reference dataset into
an input query image. Applications of these capabilities
include adding and refining geotags in image collections
[15, 41], navigation [26], photo editing [44], and 3D recon-
struction [11]. However, geo-localization of an image is a
challenging task because the query image and the reference
images in the database vary significantly due to changes in
scale, illumination, viewpoint, and occlusion.

Image retrieval techniques based on local image fea-
tures [27] can achieve increased robustness against pho-
tometric and geometric changes [24, 42]. However, not
all local features are useful for geo-localization [21]. For
example, features extracted from transient scene elements
(pedestrians, cars, billboards) and ubiquitous objects (trees,
fences, signage) can introduce obfuscating cues into the
geo-localization process. Many approaches have been pro-

posed to address this issue by focusing on the uniqueness of
a feature by removing and reweighting non-unique features
within the reference data [21, 32] or in the query image [2].
Indeed, unique features are helpful, but a non-unique fea-
ture may actually help increase the chance of correct local-
ization, either by itself or in combination with others.

We exploit a data-driven notion of good features for
geo-localization. That is, we aim to foster features hav-
ing relatively high matching scores in correct localization
outcomes, in contrast to their relatively low score for neg-
ative outcomes. Further, we cast feature score prediction
as a classification problem, assuming the characteristics are
shared in a reasonably-scaled geographic region. We use a
separate set of geo-tagged Internet images to generate train-
ing data, computing matches against database images. To
cope with noise and high intra-class variation among the
training data, we adopt recent bottom-up clustering tech-
niques for visual element discovery [8, 9] that involves iter-
ative training of linear support vector machines (SVM). At
the query phase, the algorithm selects features in a query
image prior to the geo-localization process by accumulat-
ing predictions from the bank of linear SVMs. Our results
show improved performance is achieved by using only fea-
tures that are predicted as useful, while reducing the number
of features significantly.

The feature representation for such a task should not
only be robust to photometric and geometric changes, but
also have a high discriminative power as we want to learn
features over a large area, e.g. a city. Therefore, we avoid
using low-level features for learning, which are hard to be
discriminative over a large area. We propose a per-bundle
vector of locally aggregated descriptors (PBVLAD) for fea-
ture representation, where each maximally stable (MSER)
[28] region is described with a vector of locally aggregated
descriptors (VLAD) on multiple scale-invariant features de-
tected within the region. This allows us to represent multi-
ple features with a fixed-size vector such that it can be used
in various classification methods such as an SVM. We show
in the experiments that this feature representation has sig-
nificant improvement over low level features in both learn-
ing to predict features and retrieving images.



(a) Query Image (e) Retrieved image(b) Feature extraction

PBVLAD

(40.443°, −80.006°)( λ, φ ) = ?
Confidence Score

(d) Feature selection

Green: Selected
Blue: DiscardedBank of SVM 

Classifiers

MSER region

SIFT keypoints

(c) Prediction

Figure 1: Overview of our approach. From an input query image with unknown geo-location (a), MSER regions and SIFT keypoints
forms a bundled feature [40], and consequently represented by PBVLAD (b). Features go through a pre-trained bank of SVMs that outputs
binary predictions about a feature being “good” for geolocalization (c). Predictions are accumulated to compute confidence scores for each
feature (d, left). Features with high scores are selected for geo-localization (d, right). Retrieved geo-tagged image is shown in (e).

Our contribution is two-fold: (1) We offer a way to pre-
dict features that are good in a data-driven sense for geo-
localization in a reasonably-scaled geographic region. We
show that by selecting features based on predictions from
learned classifiers, geo-localization performance can be im-
proved. (2) We propose per-bundle vector of locally aggre-
gated descriptors (PBVLAD) as a novel representation for
bundled local features that is effective for both learning to
predict features and image retrieval.

2. Related work
There are two main categories in image geo-localization

for street-level input images. Our method falls into the cate-
gory of image-retrieval-based methods where a geolocation
of the image is approximated by identifying geo-tagged ref-
erence images depicting the same place [3, 5, 16, 35]. The
other is to estimate the full camera pose of the query image
using a 3D structure-from-motion model constructed from
reference images [13, 17, 25, 31], which is limited to places
with a dense distribution of reference images.

Our work is mostly related to recent works attempting
to select features that are geographically discriminative by
taking advantage of geotags in the database. Schindler et
al. [32] build a vocabulary tree using only unique features
that appear at each location. Arandjelovic and Zisserman
[2] use distribution in the descriptor space as a measure for
distinctiveness. Knopp et al. [21] refine the database by re-
moving features that match to faraway places. Rather than
finding features unique to specific places, Doersch et al. [9]
find image patches that also occur frequently in a geograph-
ical region, and unique with respect to other geographic re-
gions. While these methods focus on the uniqueness of a
feature, we focus on features that explicitly contribute to
geo-localization either positively or negatively. Although
unique features do characterize a location, it may be risky
to discard all non-unique features, some of which may con-
tribute to correct retrieval by having high matching score in
the correct location than in false positives.

Some cast the localization problem as a classification
problem where visual words are weighed according to their

importance to specific locations [4, 12]. Conversely, we
train classifiers to predict whether a feature is useful for
geo-localization over a larger scale of geographic region,
utilizing a separate set of geo-tagged images from photo
sharing websites taken in a city to generate our training data.
Based on the predictions, we select features prior to geo-
localization. We show that better performance is achieved
without using all features. It is also more scalable as the
training images can be much more sparse than the reference
images, with the assumption that these characteristics are
shared among images in the same geographic region.

In the fields of image retrieval, there is a large body of lit-
erature on feature selection and weighting [30, 36, 38, 45].
The closest work to ours is [33], which tries to find the im-
portance of each feature by training a per-examplar SVM
on a given query image with hard negative mining. While
this method can be effective, it is time consuming as a fresh
model is trained every time. In constrast, we refine and or-
ganize the outcomes of geo-localizing training images in
offline, and use this knowledge for selecting features.

In terms of selecting features in advance to matching in
a data-driven way, our work is closely related to [14], but
with different focuses. Whereas [14] tries to predict fea-
tures that are likely to form a match, we predict features that
contribute to correct geo-localization. As we show in our
experiment, not all matches are useful for geo-localization.

Applying VLAD to local regions in previous work was
either based on tiles from rectangular grids [1] (as in spa-
tial pyramids [23]), or on bounding boxes [39], which are
not robust to geometric changes. We propose to use VLAD
for representing a bundled feature [40], which consists of
SIFT keypoints and an MSER region that are both repeat-
able, thus resulting our PBVLAD to be robust to geometric
and photometric changes.

3. Proposed approach
The overview of our approach is shown in Figure 1. In

this section, we first introduce our proposed feature repre-
sentation for image retrieval and training calssifiers (Sec.
3.1). We then illustrate our training framework for automat-



ically generating training data and training a bank of SVMs
for predicting good features for geo-localization (Sec. 3.2).

3.1. Per-bundle VLAD for feature representation

We want to identify parts of an image that are useful
for geo-localization, using a discriminative classification
method such as SVM. However, it is a hard problem to learn
such characteristics given a low level description of a cor-
ner or a blob. Thus, we propose per-bundle vector of locally
aggregated descriptors, namely PBVLAD. The key idea is
to use groups of low level features, and describe them in
a vector with a fixed-size that allows it to be compared in
standard distance measures, and enables it to be used for
various classification methods.

The concept of a bundled feature was proposed by Wu et
al. [40] for retrieving partial-duplicate images. By bundling
multiple SIFT features detected in the same MSER regions,
the discriminative power is increased while still being re-
peatable, as both components are robust to photometric and
geometric changes. The original representation was a con-
catenation of quantized SIFT features, which changes in
length as a MSER region can contain different number of
SIFT features. The similarity between two bundled features
was measured by computing intersection between them. In
this paper, we propose to describe a bundled feature with a
vector of locally aggregated descriptors (VLAD) [19]. This
representation produces sparse vectors with a fixed-size that
is convenient for comparing distances and training classi-
fiers such as SVM. Compared to the bag-of-words (BoW)
representation, VLAD can have a much smaller dimension
while maintaining high discriminative power, and it can be
further quantized without significant loss in performance.
Note that Min-hash sketches can also provide a compact
representation [6], but it has a comparably low recall and a
limited number of applicable classification methods as stan-
dard distance measures cannot be applied.

Let R and S denote the MSER regions and SIFT fea-
tures detected in image I , respectively. Each MSER region
r ∈ R contains a set of SIFT features B ⊂ S that are de-
tected within that region B = {s = (d, l)|l ∈ r}, where
d and l denote the descriptor and the location of the SIFT
feature. B is called a bundled feature [40]. For a bundled
feature Ba, its associated SIFT features sa = (da, la) ∈ Ba

are each assigned to a visual word of a coarse vocabu-
lary W via nearest neighbor search such that NN(da) =
argmin

w
||da − cw||, where cw is the centroid of the visual

word w. The subvector of per-bundle VLAD that corre-
sponds to the visual word w, denoted as pwa , is obtained
as an accumulation of differences between da’s that are as-
signed to w and the centroid cw. As proposed in [7], we
normalize the differences (i.e., residuals), so that each con-
tribution of SIFT descriptor di to the vector pwa are equal.
This is to limit the effect of possible noise, although bundled

features are robust to photometric and geometric changes.

pwa =
∑

di:NN(di)=w,di∈Ba

di − cw

‖di − cw‖
(1)

The final representation is the concatenation of the vectors
pwa followed by L2 normalization.

pa =
[
p1a, p

2
a, ..., p

|W |
a

]
(2)

We tested multiple normalization schemes [1, 19], but the
combination of residual- and L2- normalization performed
the best in our data. The PBVLAD representation of corre-
sponding bundled features are visualized in Figure 2.
Similarity metrics. The similarity between two PBVLAD
is computed as their dot product M(pa, pb) = pa · pb. Fig-
ure 3 depicts the matched feature regions of two corre-
sponding images. We define the matching score f of a fea-
ture pq in a query image Iq to a reference image Ir as the
maximum possible similarity between pq and features in Ir.
The image similarity Sim between a query image Iq , and
the reference image Ir becomes the sum of matching scores
of individual features pq ∈ Iq with respect to Ir.

f(pq, Ir) = max
pr∈Ir

M(pq, pr), (3)

Sim(Iq, Ir) =
∑
pq∈Iq

f(pq, Ir) (4)

We use above image similarity measure to retrieve reference
images that best matches the query image.

For efficient nearest neighbor search in the reference
data, we reduce the dimension of raw PBVLAD using
principal component analysis (PCA). Instead of performing
PCA on a whole vector, we do on a per-visual-word basis by
performing PCA on subvectors pw that are generated from
each visual word w. We do this in order to preserve the
characteristics of each visual words that might be lost due
to the overall sparsity of the vector. In our implementation,
a coarse vocabulary of 128 visual words was used, yield-
ing 16,384-dimensional raw PBVLAD’s. The dimension is
then reduced to 2,048 by performing PCA on 128 visual
words and taking the top 16 components of each. Note that
PBVLAD matching can be efficiently indexed using prod-
uct quantization [18]. Henceforth, the term feature will re-
fer to PBVLAD representation of a bundled feature.

3.2. Predicting good features for geo-localization

Automatic training data generation. Given an arbitrary
set of geo-tagged images It = {It}, we want to automat-
ically generate good/bad training examples of features for
geo-localization using only their associated GPS locations.
Rather than having assumptions about good and bad fea-
tures for geo-localization, we want to find them in a data-
driven way. This enables our method to adapt to various



Figure 2: PBVLAD representation of corresponding bundled features. (a,e) Two different images depicting the same place. (b,d) Multiple
SIFT features are bundled within MSER regions. (c) Each bundle is represented with VLAD. We follow the visualization scheme of [19]
where subvectors are represented in 4x4 spatial grid with red representing negative values. Note that only non-sparse blocks that correspond
to overlapping visual words of two bundles are visualized due to space limit.

Figure 3: Matching with PBVLAD with similarity threshold 0.5

geographical regions. For each image in the training set,
we retrieved top n = 100 images from the reference set
Ir = {Ir} using image similarity defined in Eq. 4. We
investigate whether a feature in a training image pt ∈ It is
explicitly contributing to the correct retrieval of the ground
truth image. To this end, we compare a feature’s matching
score to a ground truth reference image f(pt, IGT ), against
the matching score to a falsely retrieved images f(pt, IFP ).
Given that the overall image similarity between two im-
ages is the sum of individual matching scores (Eq. 4), this
comparison helps us differentiate good features based on
their individual contribution. If the difference between two
values |f(pt, IGT ) − f(pt, IFP )| is greater than a certain
threshold, we include the feature into the training set, as-
signing positive label when f(pt, IGT ) > f(pt, IFP ), neg-
ative label otherwise. This process is depicted in Figure
5(a-d) and provides the initial positive and negative training
feature set for data-driven visual component discovery.
Closed-loop training of SVM classifiers. The automatic
labeling approach above can sometimes generate contradic-
tory labels for the features with similar appearance. This
commonly occurs in visual elements that appear in both the

(a)

(b)

(c)

(d)

(e)

Training Image Ground-Truth

Reference Image
Initial Training Data

Figure 4: Initial training data generation. Positive and negative
training examples are depicted in green and blue, respectively.

transient and the static objects. In Figure 4, for example,
text on buses (b) and t-shirts (e) is assigned a negative la-
bel, while text on buildings and store signs (d) belongs to
the positive set. A limited field-of-view overlap between a
training image and a ground truth image can also lead to
such contradictory labelings. Windows on the same build-
ing, for instance, can be assigned to different labels due
to their visibility in the ground-truth reference image IGT .
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Figure 5: Overview of our training framework. For each training images that have GPS-tags (a), we retrieve top n images from the
reference set (b-c). Positive labels are assigned to features that have higher matching score in the ground-truth reference image than in the
falsely retrieved reference images, with a margin greater than thres. Negative labels are assigned in a similar manner. (d). To handle noise
and high intra-class variation, we use bottom-up clustering technique, refining the positive set as well as training SVMs iteratively (e-f).

Figure 6: Top elements in the final clusters with a high ratio of
positive labels. Each half row corresponds to different clusters.

Figure 7: Final negative set elements aligned according to their
initial clusters. Each half row corresponds to different clusters.

Such contradictory labeling on similar features limits the
prediction accuracy.

On the other hand, there exists high intra-class variation
in both the positive and negative classes: Windows have
different appearances from text, for example, yet features
from both appear in the same class. Training a single classi-
fier over the entire data may be negatively affected by such
intra-class variation.

To solve the problems of contradictory labelings and
intra-class variation, we perform bottom-up clustering [9]
on the initial training feature set. By doing so, we obtain
clusters of training examples whose appearances and the la-
bels are most consistent, as well as a bank of linear SVM
classifiers that are trained within each cluster. Each training

example constructs a cluster by finding k nearest neighbors
in the training set. Redundant sets whose top ranked ele-
ments overlap with existing sets are eliminated. If a cluster
has a high ratio of negative labels, the negative examples
in that cluster are assigned to the final negative set N , and
the positive ones are discarded. For the remaining clusters
Ci, a linear SVM is iteratively trained on the positive ex-
amples in each cluster, using N as the negative set for hard
negative mining (Figure 5(e-f)). As the SVM uses its true-
positive firings for the re-training in the iterative procedure,
clusters are left with features having consistent appearances
and labels. Similar to [9], the clusters and N are divided
into three sets to avoid overfitting. We only keep the SVM
classifiers with an accuracy rate greater than 0.8. Finally,
we remove redundant classifiers whose weight vectors have
a high cosine similarity with that of other classifiers as in
[20]. Examples of top elements in Ci are shown in Figure 6.
Figure 7 shows elements inN , which are aligned according
to their initial clusters. Interestingly, although our approach
makes no assumption on features that are useful for geo-
localization, we can observe semantic relationships emerge
through the learning process. Namely, windows, charac-
teristic wall patterns, and letters on signage are detected
as positive elements, while features from trees, people, car
wheels, pavements, and edges are considered as negative
elements.

In the querying phase, we feed query image features into
the bank of linear SVM classifiers. We accumulate predic-
tions from each classifier to compute the confidence score
of a feature being good for geo-localization (Figure 10 (b)),
weighting them using the discriminativeness [34] of the
classifier, which is the ratio of number of firings in its cluster
Ci over that in the entire training set, in order to compen-
sate for the distribution of visual elements that each clus-
ter spans. We discard features with a low confidence score
and keep only the remaining features for performing geo-
localization (Figure 10 (c)).

Implementation details. For generating the training set,
we define the IGT image set as reference images that are



within 50 meters from the given GPS location and passed
geometric verification w.r.t. the training image by fitting a
fundamental matrix. For IFP , we took reference images
that are retrieved within the top n (n =100), and at least
270m away from the given GPS location. This accounts
for both user-provided geo-tag errors and the fact that large,
symmetric buildings are often observable from extended ar-
eas. Before comparing f(pt, IGT ) and f(pt, IFP ), we nor-
malize the matching scores by multiplying 1

max(f) to com-
pensate for a non-uniform distribution of features. For train-
ing and predicting, we separated features into three scale
levels based on the size of the MSER, as we observed that
the distribution of positive and negative PBVLAD features
varies in different scales. The number of SVM classifiers
used in each level were 35, 150, and 25.

4. Experiments

4.1. Image Geo-localization

Dataset. For the reference image set Ir, we collected
27,520 geo-registered Google Street View images covering
the Pittsburgh (U.S.) area. These images contain 8 overlap-
ping perspective views extracted from the spherical panora-
mas in two different yaw directions, to capture both eye-
level street views and the higher parts of the building in ur-
ban environments. This setting is similar to those used in
[9, 12, 37]. The co-located GPS-tagged training image set
It, comprising positive and negative training data Ci’s and
N for learning, was downloaded from Flickr and consisted
of 850 images that were successfully registered to the near-
est elements in Ir through geometric verification. The test
image set Iq was formed by 145 internet collection images
from the query set of [42] with manually verified GPS-tags.
Results. We compare the proportion of correctly localized
image among a ranked list of top n candidates. All of our
results are without post-processing such as geometric re-
ranking [29]. We consider an image to be localized if it is
within 35m from the ground truth location. For a baseline,
we compare with our implemented version of [42] We also
compare a variant of [42] with SIFT feature selection by
pre-trained linear SVM in a procedure similar to our selec-
tion of PBVLAD features (SIFT Select).

Figure 8 depicts how our systems with selected PB-
VLAD (PBVLAD Select) and all PBVLAD (PBVLAD All)
consistently outperform the baseline methods. Feature se-
lection is more successful in PBVLAD than SIFT. The per-
formance of using selected features is consistently better
than using all features in PBVLAD, whereas this behavior
alternates when considering SIFT features.

The performance at the top of the shortlist (n = 1) dis-
played in Table 1. Our method achieves a recall of 64.83%
using all features and improves to 68.28% with selected fea-
tures, while the best baseline method (SIFT Select) obtains

Method % Correct
PBVLAD All 64.83
PBVLAD Select 68.28
PBVLAD Random 33.38
PBVLAD Select{ 19.31
SIFT All [42] 49.66
SIFT Select 46.90
Chance 0.20

Table 1: Proportion of correctly localized images at top 1
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Figure 8: Geo-localization performance

49.66%. We also tested the performance of the system us-
ing the same number of PBVLAD features as our selec-
tion framework, but that are picked randomly (PBVLAD
Random). Its poor recall rate supports the effectiveness of
our selection mechanism, illustrating how simply selecting
fewer features does not generally improve the performance.
Moreover, we also tested with the features that are not se-
lected by our framework (PBVLAD Select{) to illustrate
how discarded features are in general detrimental to the
geo-localization. The random chance of retrieving correct
images is 0.2 %, which reflects difficulty of the dataset.

Figure 9 shows examples of our results using PBVLAD.
The top four retrieved images are shown for each query im-
age. As can be seen, our method retrieves correct reference
images despite partial occlusions and changes in viewpoint,
illumination, and scale. Figure 10 depicts other examples
where PBVLAD Select outperforms PBVLAD All.

We attribute the enhanced performance of PBVLAD-
based retrieval to the increased discrimination power pro-
vided by aggregated features. Figure 11 (b) illustrates the
maximum obtained feature similarity score for the features
within a query image (a) w.r.t. the entire reference dataset.
We can observe that PBVLAD features in foliage image re-
gions are not highly matched to the reference set. Where
individual SIFT features may have many similar features in



Figure 9: Example result (left) Query images, (right) Top four retrieved images using our proposed PBVLAD. Query images are of various
sizes.

(a) (b) (c) (d) (e)

Figure 10: Qualitative comparison of retrieved image using selected PBVLAD and using all of the features. (a) Query image (b) Heat
map representation of confidence being a good feature (c) Selected features (green:selected, blue:discarded.) (c) retrieved image using
selected features (d) retrieved image using all features.
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Figure 11: (a) Query image (b) Heat map of maximum matching
scores max

Ir
(f(pq, Ir)) of each features pq . (c) Confidence scores

Query image                        Ground-truth                    Retrieved image  

Figure 12: Failure cases. Retrieved images are more than 100m
away from ground-truth locations.

the dataset, the analysis of their local ensembles is more dis-
criminative. Moreover, our final predicted feature scores (c)
illustrate how our framework discriminates good features
prior to direct feature similarity estimation.

Failure cases. There are many cases where the ranked
list contained the same building in the query image, but at
different locations. The first and second row of Figure 12
show such examples. This occurs often for images depict-
ing a large and symmetric buildings. In many cases, the
building itself looked more similar to the retrieved image
than the ground-truth reference image. Another observation
is that when it comes to severe scale changes, the number of
SIFT keypoints detected within the MSER region is reduced
due to lack of details. In such cases, it becomes hard to
match a PBVLAD as many of its group members are miss-
ing. This could be alleviated by using spectral SIFT [22],
or by only including keypoints detected within some scale
range from the MSER region similar to [6].

4.2. PBVLAD for general image retrieval

We evaluate PBVLAD as a descriptor for image retrieval
on the Oxford5k Buildings dataset [29]. Table 2 com-
pares our method against state-of-the-art image retrieval
approaches [10, 19], which includes VLAD, Fisher vector
(FV), and a bag-of-words baseline. The evaluation was per-
formed without dimensionality reduction for all methods.
PBVLAD shows competitive performance to other state-of-
the-art descriptors. Table 3 shows the effect of dimension
reduction using PCA. The decrease in the performance is
not significant until the dimension is reduced to 12.5%.

Descriptor # Vocabulary mAP
BoW [19] 200,000 0.364
BoW [19] 20,000 0.319
Fisher [19] 64 0.317
VLAD [10] 128 0.339
PBVLAD 128 0.369

Table 2: Comparative image retrieval performance of PBVLAD
on the Oxford 5k dataset. The accuracy is measured by the mean
Average Precision (mAP). All descriptors are uncompressed.

Full Dim Reduced
Dim 16384 8192 4096 2048 1024
mAP 0.369 0.364 0.334 0.264 0.210

Table 3: Retrieval performance of PBVLAD on Oxford 5k
dataset, before and after the dimensionality reduction using PCA.
The accuracy is measured by the mean Average Precision (mAP)

5. Conclusion
In this work, we proposed per-bundle vector of locally

aggregated descriptors (PBVLAD) for maximally stable re-
gions in an image. PBVLAD provides a convenient and
effective representation for classification of grouped local
features. Using this descriptor and a geo-tagged internet im-
age collection, good/bad features for geo-localization were
exploited with the notion of good/bad being explicitly de-
fined in terms of the feature’s contribution to the retrieval
process. To remove noisy labels and deal with the large
intra-class variation, bottom-up clustering was performed,
generating a bank of SVM classifiers. At the query phase,
outputs of each classifiers were accumulated to select good
features. The experimental results show an improvement in
the geo-localization accuracy when only good features pre-
dicted by our algorithm were used.
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